Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Access to high‐quality outreach programs is crucial for preparing students for STEM careers, yet traditional classrooms often lack diverse, hands‐on learning opportunities, particularly in anatomy and evolutionary biology. We present Are You Stronger Than a Lemur?—an interactive STEM activity that introduces K‐12 students to fundamental concepts in anatomy, evolution, physics, and data analysis through real‐world applications. Participants formulate hypotheses, collect and analyze data, and engage with age‐tailored educational materials that support differentiated learning. We assessed the program's effectiveness through pre‐ and post‐program knowledge assessments across 1670 participants (1045 eligible responses) from the United States and Mongolia. Results showed a significant increase in knowledge acquisition in anatomy, evolution, physics, statistics, and zoology. After controlling for confounding variables, we also observed a significant increase in interest in STEM careers. Are You Stronger Than a Lemur? bridges gaps in STEM education, particularly in underrepresented fields like anatomy and evolutionary biology, by providing an adaptable program suited to different age groups, genders, and countries. Its success lies in connecting theoretical concepts to tangible data, fostering critical thinking, problem‐solving, and data interpretation skills. The program not only reinforces core STEM concepts but also offers students a unique, engaging experience that deepens their understanding and enhances their potential for future STEM careers.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Abstract Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three‐dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine‐based contrast‐enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three‐dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross‐dissected conspecifics. Physiological cross‐sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood‐gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology—an observation to be explored across larger samples in the future.more » « less
An official website of the United States government
